ddgw.net
当前位置:首页 >> 正弦函数的基本性质 >>

正弦函数的基本性质

定义与定理定义:对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sin x,这样,对于任意一个实数x都有唯一确定的

奇函数,图象关于原点对称,在[2K派-派/2,2K派+派/2]上递增,在[2K派+派/2,2K派+3派/2]上递减,周期为2派,最大值为1,最小值为-1,振幅为1/(2派)

正弦函数y=sinx;余弦函数y=cosx1、单调区间正弦函数在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减余弦函数在[-π+2kπ,2kπ]上单调递增,在[2kπ,π+2kπ]上单调递减2、奇偶性正弦函数是

正弦函数y=sinx;余弦函数y=cosx1、单调区间 正弦函数在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减 余弦函数在[-π+2kπ,2kπ]上单调递增,在[2kπ,π+2kπ]上单调递减2、奇偶性 正弦函数是奇函数 余弦函数是偶函数3、对称性

去百度文库,查看完整内容> 内容来自用户:天道酬勤能补拙1.4.2正弦函数 学习目标1.了解周期2.知道正、余弦函数的周期公式,并能求出正、余弦函数的最小正周期.自学探究 阅读课本第34页到35页例2上方,完成下列任务1.周期函数定义是

正弦型函数及其性质! 正弦型函数解析式:y=Asin(ωx+φ)+b 各常数值对函数图像的影响: φ:决定波形与X轴位置关系或横向移动距离(左加右减) ω:决定周期(最小正周期T=2π/ω) A:决定峰值(即纵向拉伸压缩的倍数) b:表示波形在Y轴的位置关系或纵向移动距离(上加下减) 作图方法运用“五点法”作图 “五点作图法”即取当X分别取0,π/2,π,3π/2,2π时y的值.

正弦函数性质可以看看这里 http://baike.baidu.com/view/536305.htm y=asin (ωx+Φ ) 的平移用八个字可以概括:左加右减,上加下减 比如 将函数f(x)的横坐标伸长为原来的2倍,得y=Asin(1/2ωx+Φ) 再向左平移π/2个单位,得y=Asin[1/2ω(x+π/2)+Φ] 向上平移1个单位就是y=Asin[1/2ω(x+π/2)+Φ] +1

正弦型函数解析式:y=asin(ωx+φ)+b正弦函数是三角函数的一种.y=sinx

(1)定义域 正弦函数、余弦函数的定义域都是实数集R,分别记作 y=sinx,x∈R,y=cosx,x∈R,其中R当然可以换成(-∞,+∞). (2)值域 因为正弦线、余弦线的长度小于或等于单位圆的半径的长度,所以|sinx|≤1,|cosx|≤1,即 -1

rpct.net | ddgw.net | gyzld.cn | sytn.net | jingxinwu.net | 网站首页 | 网站地图
All rights reserved Powered by www.ddgw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com